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A SIMPLE ACOUSTIC SCATTERING MODEL FOR ENSEMBLES OF ROCKS 
AND SEA-SHELLS LYING ON THE OCEAN FLOOR. 

C. Feuillade and R.W. Meredith 

Naval Research Laboratory, Stennis Space Center, Mississippi 39529-5004 

M.D. Wagstaff 

Planning Systems Inc., Slidell, Louisiana 70458 

ABSTRACT 

This report describes a computer model for predicting levels of acoustic scattering, at sonar 
frequencies, from an important class of clutter objects, i.e., rocks and sea-shells lying on the ocean 
floor. A simplified modeling approach has been adopted which incorporates basic concepts and 
principles. Rocks are represented by either rigid movable spheres or elastic spheres, a technique 
which has been previously used to model aqueous suspensions of sand over the equivalent 
frequency range. Sea-shells are represented by water-filled spherical shells. The model predicts 
scattering strength values for areas of the ocean floor covered by ensembles of rocks and shells of 
sizes, numbers, geologic type, and material compositions, typically found in littoral and coastal 
regions. The results of the model show that ensembles of cobbles and pebbles may give rise to 
scattering strengths of sufficient magnitude to mask sonar targets, or appear as false sonar targets 

themselves. 



INTRODUCTION 

Within the last few years, it has been widely recognized that coastal and littoral waters will be the 

most likely area for future US naval operations. In these regions mines can be used very 

effectively, and mine warfare, especially the need for improved mine countermeasures (MCM), has 

become a fundamental concern of the Navy. 

A key feature of current Navy requirements is the ability to quickly detect and classify underwater 

objects, in order to avoid or clear littoral mines. At present, active sonar is the principal means of 

achieving this objective, due to its capacity for fast, long-range reconnaissance. In shallow-water 

environments, however, the acoustic response of a target is typically heavily corrupted by 

reverberant clutter. To optimize sonar operations, therefore, it has become necessary to understand 

the characteristics of the reverberant acoustic field in order to identify the signatures of targets of 

interest embedded within it. 

Reverberation is due to collective scattering from a large number and diverse range of distributed 

clutter objects. The different types of obstacle include, for example, bubble clouds and plumes 

generated at the ocean surface, individual fish and fish schools swimming within the water 

column, or rocks and sea-shells lying on the bottom. Clearly, it would be intractably difficult, or 

perhaps impossible, to perform experiments which would isolate and measure the scattering 

characteristics of all clutter objects. Similarly, the analytical/computational problems associated 

with providing theoretical target strength estimates of arbitrarily-shaped objects, singly or in 

ensemble, are widely acknowledged. For these reasons, simplified modeling approaches, which 

maintain basic physical principles while reducing computational load, and which provide 

acceptably realistic estimates of scattering strength, hold considerable appeal and are of great 

utility. 

As an application of this modeling rationale, this report describes a model for predicting levels of 

acoustic scattering from an important class of clutter objects, i.e., rocks and sea-shells lying on the 

ocean floor. While the model makes a number of simplifying assumptions, it is capable of making 

determinations for rocks and shells of sizes, numbers, geologic type, and material compositions, 

typically found in littoral regions. The model leads to some notable results. In particular, it shows 

that ensembles of cobbles and pebbles may have scattering strengths similar to the target strengths 

of metal spheres and may also, therefore, mask other targets, or even appear as false sonar targets. 

Following this introduction, section 1 of this report describes the modeling approach used to 

calculate the scattering strength of the sea-floor when covered by rocks and sea-shells. Section 2 

develops the theoretical formalism for predicting acoustic scattering from individual and multiple 



rigid movable spheres and elastic spheres and shells. In section 3 we apply the formalism to study 

scattering from rocks and sea-shells of various sizes and compositions. Section 4 gives a brief 

discussion of some issues raised by the work, and this is followed by a summary of conclusions. 

1.   MODELING APPROACH 

The purpose of the scattering model described in this report is to provide estimates of the scattering 

strength of ensembles of rocks and sea-shells lying on the sea floor. The approach used to 

construct the model is depicted schematically in figs.l and 2. Figure 1 indicates the individual 

scattering components. Rocks are represented by either rigid movable spheres or elastic spheres. 

Clearly, rocks are irregular in shape and not generally spherical. A spherical scatterer 

approximation has been used successfully by Sheng and Hay,1 however, to obtain reasonable fits 

to scattering data for aqueous suspensions of sand at frequencies consistent with the requirements 

of the present application. Sheng and Hay achieved their best fits using the rigid movable sphere 

representation. They found that the elastic sphere model predicted a resonance structure in the 

scattered field spectrum which is not observed in the data. The large nonspherical irregularities in 

shape occurring in real scatterers probably leads to the suppression of such resonance behavior. 

Sea-shells are represented in the present model (see fig.l) as water-filled spherical shells. While 

this seems to be a reasonable approach, no data is currently available by which to estimate its 

validity. 

Figure 2 illustrates the method by which the scattering strength of the sea-floor is estimated in the 

model. Scattering strength is equivalent to target strength per unit area. In the model, a number of 

spheres or spherical shells of random size and random acoustical properties (i.e., density and, if 

applicable, elasticity) are randomly placed within an area of 1 square meter. The scattered field 

from each object is individually calculated, and a coherent sum in the direction of the incident field 

is then determined. From the aggregate scattered field, the total target strength of the scatterers 

within the 1 square meter area (and, hence, the scattering strength of the portion of sea floor due to 

the ensemble) is found. The scattering strength is calculated as a function of the angle of incidence 

of the incoming field (i.e., the grazing angle). Additionally, in the simulations discussed later in 

this report, the scattering strength is averaged over a number of "snapshots", i.e., randomizations 

of geometrical configuration, diameter, density, and other acoustical properties. 

Apart from the spherical scatterer approximation itself, the model incorporates four other 

simplifying assumptions: (a) the sea floor is considered to be acoustically transparent, and 

therefore does not contribute to the scattering strength; (b) multiple scattering effects between rocks 

are not included; (c) "shadowing" effects (i.e., the effect of one sphere occluding another) are 



neglected, so that all of the scatterers are assumed to experience the same incident field intensity; 

and (d), none of the rocks are considered to touch each other. The effect of assumptions (a) and (b) 

should be to reduce scattering strength predictions below what might be expected from 

experimental measurements; while assumption (c), which is expected to be important only at low 

grazing angles, should serve to increase scattering strength predictions. Assumption (d) is 

probably suitable for rocks of cobble and pebble size classes, but may be inappropriate for 

granules and sea-shells. Overall, it appears safe to regard the model as providing lower bound 

estimates of scattering strength. Further development is being undertaken to investigate the 

importance of the underlying assumptions; which should lead to future upgrades of the scattering 

model by taking their effects into account. Another issue needing examination in the future, which 

is not considered in the present model, is the effect on scattering strength when rocks are partially 

buried in the bottom. 



2.   THEORETICAL DEVELOPMENT 

(a) Rigid movable sphere 

The theory of scattering from a single rigid immovable sphere was introduced by Anderson.2 His 
approach was later modified for a rigid movable sphere by Hickling and Wang.3 We will consider 
the case in which a plane wave is incident on a single rigid sphere entrained in water. For 

simplicity, and with no loss of generality, the positive z-axis is chosen for the direction of 

incidence. The origin of coordinates is placed at the center of the sphere. The scattering behavior is 

calculated by expanding the acoustic field in terms of normal modes (i.e., products of Legendre 
polynomials and spherical Bessel functions) and applying the appropriate boundary conditions at 
the spherical interface between the media. 

The incoming plane wave is described by 

oo 

^ = eikrcose = X im(2m+l)Pm(cose)jm(kr) . (i) 
m = 0 

In this expression (and throughout this development) we suppress the harmonic time dependence 

e-icot? where co is the frequency of the incident field. The quantity k (= co/c) is the propagation 

wavenumber, where c is the sound speed in water. The scattered field is 

oo 

<!>s=   I  AmPm(cos0)hm(kr) , (2) 
m = 0 

where the coefficients Am are to be determined. While the sphere is rigid, it is freely movable 
under the action of the incoming sound waves. The boundary conditions at the surface r = a of the 
sphere (a is the radius) are: (i) the normal displacement must be continuous at the surface; (ii) the 
rate of change of momentum of the sphere is equal to the force exerted by the water as it moves 
under the action of the incident field. Applying these boundary conditions leads to the following 

relations: 

Am = -im(2m+l)in^- (m*l), (3) 
hm(ka) 



where: jm(z) * £[jm(z)]; hm(z) ^ A[hm(z)]; and 

(^-) ka Ji(ka) -jjCka) 
Aj = -3i-?    , (4) 

(^) ka h'jCka) - ^(ka) 

where (pi/p) is the ratio of the density of the sphere to the density of water. The various values of 

Am are then incorporated into (2) to determine the scattered field. At scattering distances large 

relative to ka, 

hm(kr) -* (-i)m+I *—   . (5) 

Making substitutions from (3), (4), and (5) into (2) gives, for the backscattered field (0 = 180) 

fi1-) ka j'(ka) -j",(ka) 
«,s=if r i2(.ir(2m+1)iM}.3-i ], (« 

b   L   lm.o Mka> (^-) ka h',(ka) - h,(ka) J 

m* 1 P 

and the corresponding backscattering target strength for a single sphere is: 

TS=101og10[|<t>s(r=l)|2] , (7) 

where <t>s (r = 1) indicates the backscattered field at a range of 1 meter. If there is an ensemble of N 

closely spaced scatterers, the total target strength is determined by performing a coherent sum of 

the backscattered field from the individual spheres, i.e., 

TSE=101og10[|i (t>Sn(r=l)|2]. (8) 
n=l 

Clearly, in the present application, the value of the coherent sum will be a function of grazing 
angle, and will exhibit peaks and nulls due to constructive and destructive interference of the 

scattered fields from the various scatterers. 

(b) Elastic sphere 

The problem of scattering from an elastic sphere was treated by Faran.4 The approach is similar to 
that for the rigid sphere, and the incident and scattered fields are again given by eqs. 1 and 2. 
However, in this case, an acoustic wave is generated inside the sphere, and this must be 



incorporated in the treatment. In the elastic sphere the acoustic displacement ui has two 

components, and is represented in terms of a scalar potential (j>i (the compressional wave 

component) and a vector potential \y\ (the shear wave component) by the equation 

Uj =  grad (j)j + curl \|/j , (9) 

where §\ and \|/i satisfy the equations: 

fgi =   {  Vt^l } V2*,  ; (,0) 

%■-{?)*>>■ (11) 
dt Pi 

In these equations pi is again the density of the sphere, and Xi and |ii are the elastic Lame 

constants. Assuming harmonic solutions for (10) and (11), i.e., Oi = (j>i e"icot and ¥1 = \)/i e~icot, 

yields wavenumbers for compressional propagation (kjj and shear propagation (kx) in the elastic 

medium as follows: 

kL=t0(—-—)* ; (12) 

o    I 
kj. = 0) (^-)2     . (13) 

In the elastic sphere the compressional field is expanded 
00 

4>i =   X  Pm(^6)Ai1jm(kLr)   f 
m = 0 

(14) 

and the shear field is 

¥1=    S   —Pm^^CmJmOV)    • (15) 

At the interface between the water and the elastic sphere, three boundary conditions are applicable. 

The normal displacement and normal stress must be continuous, and the tangential stress must be 

zero. From the continuity of normal displacement we find, 

(-i)m(2m+l)xjm(x) + Amxhm(x) 

= A^xJ^-mCin+DCivCxr)   , (16) 

where: x = ka; xL = kLa; and xT = kTa. 



From the continuity of normal stress we find, 

-1{ x
2 [(-if (2m + 1) jm(x) + Am hm(x)] 

= XL Am t2h L^O - *i UX
L) ] " 2^1 m(m + 1) C^ [xTjjxj) - jm(xT) ]   ,      (17) 

and, since the tangential stress must be zero, we have, 

(m + 2)(m-l)C^jm(xT) + x2c^j>T) 

-2AL[xLjm(xL)-jm(xL)]   =  0   . (18) 

Equations 16, 17, and 18 must be solved simultaneously to find Am. In the computer model here, 

these equations are solved using Kramer's rule. The quantities Am are then substituted in (2) to 
calculate the scattered field. The target strength is again given by (7), and for an ensemble by (8). 

(c) Elastic shell 

The problem of scattering from an elastic spherical shell was treated by Goodman and Stern.5 In 
the shell itself the acoustic displacement u\ is again given by (9), with (f>i and Vj/j defined by (10) 

and (11) etc. In this case the compressional field is expanded 

4>1   =    I   Pm (C0S9) ( AJnUV) + K^K^ }    , (19) 
m = 0 

and the shear field is 

oo 

V, =   Xfp» (cose> < Cijm(kTr) + D>m(kTr) )   • (20) 

It is also necessary to define the compressional field within the shell cavity; which in our model is 

filled with water where sound again propagates with wavenumber k, so that 

oo 

«>2 =    X   Pm^O^AmJmOT)    • (21) 
m = 0 

The same three boundary conditions that applied to the elastic sphere, i.e., that the normal 
displacement and normal stress must be continuous, and that the tangential stress must be zero, 



now apply at both the outer and inner boundaries of the shell. From the continuity of normal 

displacement we find, 

Am x hm(x) + (-i)m (2m + 1) x j m(x) = A^ xL j m(xL) + B^ xL n'm(xL) 

- m(m + 1) C^ jm(xT) - m(m + 1) D^ nm(xT) ?   (22) 

From the continuity of normal stress we find, 

-^x2[(-i)m(2m+l)jm(x) + Amhm(x)] = -X2xl {AJJX^ + B^JXL)} 

+ 2n2xJ{AJ"m(xL) + B^n"m(xL)} 

+ 2m(m + 1) \i2 Cl {jm(xT) - xT j'm(xT) } 

+ 2m(m + 1) n2 D^ { nm(xT) - xT n'm(xT) } ?    (23) 

and finally, since the tangential stress must be zero, we find 

-2 A^{xL j m(xL) - jm(xL)} - 2 B^{xL n m(xL) - nm(xL)} 

+ C^ {(m + 2)(m -1) jm(xT) + x* j"m(xT)} 

+ D^ {(m + 2)(m -1) nm(xT) + x* n"m(xT) }   =  0     . (24) 

As described by Goodman and Stern,5 a corresponding set of equations (with variables y = ka', 

yL=kLa', and yx=kTa'; where a' is the inner radius of the shell) is obtained when these boundary 

conditions are applied at the inner shell surface. 

In all, six equations are obtained by applying the boundary conditions at the interfaces. In the 

monopole (m=0) case, the number of equations is four. Goodman and Stern describe a method of 

tabulating the equations in matrix form, and then solving for Am using Kramer's rule. The 

quantities Am are then substituted in (2) to calculate the scattered field. The target strength is given 

by (7), and for an ensemble by (8). 

The method of using Kramer's rule to determine Am, for the elastic sphere and elastic shell cases, 

is a convenient and accurate procedure for investigating the scattering behavior, and has been 

adopted for the model described in this report. Calculating the elements of the matrix and 

evaluating the determinant are readily vectorizable operations, and an efficient algorithm has been 

implemented in MATLAB. 



3.   APPLICATION TO SCATTERING FROM ROCKS AND SEA-SHELLS 

TYPICAL SIZES OF ROCKS AND SEA-SHELLS 

Six geologic rock types were modeled using the rigid and elastic sphere scattering models. In 

addition, one type of sea-shell was modeled with both the elastic shell and elastic sphere scattering 

models. The sizes of the objects used in the various models were selected based on the diameter 

classification system shown in Table l.6 Ensembles of cobbles, pebbles, granules, and sea-shells 

were modeled separately. The mean and standard deviation of the diameter for each scatterer type 

were used to select a diameter for each object via a randomizing algorithm. 

Table 1.   Udden-Wentworth diameter classification 

Rock/shell type:   cobbles pebbles granules sea-shells 

Diameter (mm)    32 -^ 256 4 -> 32 2-^4 4 -^ 128 

Diameter (<(>)        -5-^-8 -2^-5 -l->-2 -2-»-7 
Mean (mm) 144 18 3 66 
St. Dev. a (mm) 158 20 1.4 87.7 

The (() values listed in Table 1 represent a logarithmic method for denoting grain and rock sizes, 

commonly used in geological work. These quantities are defined by 2"^ = diameter (mm). The 

elastic properties of the six different rock types, and the one shell type, are listed in Table 2. The 

elastic values were deduced from several references,6"14 not all of which agree completely. 

Table 2. Scatterer types and elastic properties used in modeling 

Type p Std. Dev.       cL Std. Dev.       cT Std. Dev. 

(g/cc)        (g/cc)        (m/s) (m/s) (m/s) (m/s) 

Sedimentary 
1 Sandstone 2.35 0.8 2850 500 1602 310 
2 Shale 2.4 1.0 2725 813 1507 525 
3 Limestone 2.55 0.7 2950 2295 1673 1358 
4 Dolomite 2.7 0.4 5200 2404 2953 1410 

Average 2.5 0.74 3431 1503 1949 1078 

5 Igneous 2.82 0.34        5755 600 3265 329 
6 Metamorphic 2.81 0.25        5140 458 2915 255 
7 Sea-shells 2.65 0.05 6566 260 3414 140 

Sea-shells were modeled three times: twice as spheres, using both the elastic sphere model and the 

rigid movable sphere model; and once as fluid- (i.e., water-) filled shells, using the elastic shell 

model. Using the shell model, the sea-shell thickness was maintained at a constant value of 3mm. 

10 



Due to lack of data, the standard deviations of the compressional and shear velocities for shells 

were determined in an unusual way, i.e., they were derived by assuming that the ratio of the 

standard deviation of the density to the standard deviation of the velocity for shells would be the 

same as exhibited by the other rock types. 

MODELING RESULTS 

All scattering strength calculations were performed at a frequency of 35kHz. In all of the modeling 

performed for this study, no statistical dependence on the grazing angle was observed. Also, no 

significant deviation from a Gaussian distribution was observed in the scattering strength. 

(a) Scattering from rocks 

Figure 3, which was derived using the elastic sphere scattering model, shows the modeled 

scattering strength for the three rock size classes (i.e., cobbles, pebbles, and granules) shown in 

Table I, and for the six rock types defined in Table II. Sea-shells are treated separately. For a given 

size class and rock type, each datum point represents the mean value of the scattering strength of 

one ensemble sample, averaged over grazing angles. For each ensemble sample, the diameters of 

the individual scatterers, their compressional and shear sound speeds, and their densities, were 

randomly selected by assuming a Gaussian distribution bounded within the ranges specified for 

each parameter by Tables 1 and 2. A variation over the object number density (i.e., number of 

scatterers within a square meter) was also incorporated. For cobbles, samples with 4, 5, 6, 7, 8, 

and 9 scatterers per square meter were plotted together. With these values, the surface area of the 

bottom covered by scatterers varied between about 20% and 40%. For pebbles, samples with 600, 

700, 800, 900, 1000, 1100, 1200, and 1500 scatterers per square meter were plotted together. 

With these values, the surface area of the bottom covered by scatterers varied between about 40% 

and 100%. For granules, samples with 1000, 2500, 5000, and 1-8 (xlO4) scatterers per square 

meter were plotted together. This gave a coverage of the surface area of the bottom which varied 

between about 1% and 80%. 

Inspection of figure 3 shows that the scattering strength varies widely, and depends strongly on 

both the rock type and the rock size class. For cobbles, the scattering strength varies between -ldB 

(dolomite - rock type 4) and -31dB (igneous - rock type 5). For pebbles, the scattering strength 

varies between about -3dB (sandstone) and -16dB (igneous). For granules, the scattering strength 

varies between about -19dB (shale - rock type 2) and -52dB (metamorphic). For a given rock size, 

igneous and metamorphic rocks (types 5 and 6) typically show a lower scattering strength than the 

other rock types (i.e., about 7-11 dB lower for cobbles, 4-7 dB lower for pebbles, and about 3 dB 

11 



lower for granules). This behavior is due to the differing elastic properties of the various materials 

used to represent the rocks. Also notable are wide ranges in the predicted scattering strength, 

particularly for cobble sized rocks (e.g., ~26dB for dolomite - rock type 4) and granules (e.g., 

~29dB for metamorphic rocks - type 4). These wide ranges are probably due to the highly variable 

resonance structure of elastic spheres. As suggested by Sheng and Hay, it is likely that such 

resonances are suppressed in real rocks, due to the naturally large variation and nonuniformity of 

their shapes. As we shall see below, both the scattering strength variation with rock type, and the 

wide scattering strength ranges, largely disappear when the rigid movable sphere scattering model 

is used instead of the elastic sphere model. 

Figure 4, which was also derived using the elastic sphere scattering model, shows the dependence 

of the scattering strength on the object number density, rather than rock type. Again, the modeled 

scattering strength for the three rock size classes given in Table 1 is displayed. In this case, for a 

given size class and number density, each datum point represents the mean value of the scattering 

strength of an ensemble sample, averaged over grazing angles and over the six rock types. 

In the case of cobbles, we see that the scattering strength shows an increase as a function of the 

number density of scatterers, but that this tends to be overwhelmed by the variability, or spread, 

due to the variation of elastic parameters. Pebbles, however, indicate a reduced and much more 

uniform spread of values. In this case the model clearly indicates a moderate increase in scattering 

strength as the number of pebble scatterers increases [-log (density)]. Granules also exhibit a 

reduced spread of values. Again, the increase in the scattering strength with the number density of 

scatterers [~ log(density)] is very apparent. 

Figure 5 shows scattering strengths for the three rock size classes given in Table 1, and for the six 

rock types defined in Table n, but modeled using the rigid movable sphere scattering model, rather 

than the elastic sphere model. As in figure 3, each datum point represents the mean value of the 

scattering strength of one ensemble sample, averaged over grazing angles. In this case, for each 

ensemble sample, only the diameters of the individual scatterers and their densities were randomly 

selected (elastic properties, i.e., compressional and shear sound speeds, are not incorporated in the 

rigid sphere model). Again, as in figure 3, scattering strength values for various object number 

densities are plotted together. For cobbles, samples with 4, 5, 6, 7, 8, 9, and 10 scatterers per 

square meter were plotted together. For pebbles, samples with 600, 700, 800, 900, 1000, 1100, 

1200, and 1500 scatterers per square meter were plotted together. For granules, samples with 

1000, 2500, 5000, and 2-8 (xlO4) scatterers per square meter were plotted together. The 

percentages of the bottom surface area covered in each case were similar to the equivalent elastic 

sphere modeling cases. 

12 



When figure 5 is compared with figure 3, one feature that is immediately noticeable (and is quite 

apparent for all three rock size classes), is the uniformity of the scattering strength as a function of 

rock type (averaging about -19 dB for cobbles, -15 dB for pebbles, and -34dB for granules). Since 

the different rock types are represented only by their density parameters in the rigid movable sphere 

model, this implies that the variations in scattering strength with rock type seen in figure 3, but 

noticeably absent from figure 5, must be due primarily to changes in the elastic parameters, rather 

than the densities. Further comparison of figures 3 and 5 also shows that, for most combinations 

of rock size class and rock type, the rigid movable sphere model typically leads to a lower average 

scattering strength than the elastic sphere model (e.g., the average scattering strength for sandstone 

cobbles is reduced by about 12dB). Also, for cobbles, the spread of scattering strength values for 

each rock type is apparently reduced by using the rigid movable sphere model rather than the elastic 

sphere model, but this effect is not seen for the pebble and granule size classes. 

Figure 6 shows scattering strengths for the three rock size classes given in Table 1, plotted as a 

function of the object number density. Again these data were modeled using the rigid movable 

sphere scattering model, rather than the elastic sphere model. As in figure 4, for a given size class 

and number density, each datum point represents the mean value of the scattering strength of one 

ensemble sample, averaged over grazing angles and over rock types. However, only the diameters 

of the individual scatterers and their densities were randomly varied since, as stated above, elastic 

properties are not incorporated in the rigid sphere model. Immediately noticeable in this case is a 

reduced spread in scattering strength values for all three rock size classes. Cobbles still show the 

greatest variability, but now a rising trend in the scattering strength values as a function of number 

density may be discerned. The [log(density)] variation in scattering strength is also apparent for 

pebbles and granules. 

Since the only substantive difference in the calculations used to obtain the data for figure 6 (as 

compared with figure 4) is the omission of elastic effects in the sphere, the greater scattering 

strength variability exhibited in figure 4 must be due to the action of these effects, and to the 

concomitant changes in scattering resulting from the frequency dependent resonance behavior of 

the elastic sphere. If the argument of Sheng and Hay1 is correct (i.e., that the elastic sphere model 

predicts a resonance structure in the scattered field which, due to irregularities in shape of the 

individual scatterers, is not observed in the data) then, in the present case, we should take the 

predictions of the rigid movable sphere model as giving a more realistic indication of the scattering 

behavior of rocks on the sea floor. 
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(b) Scattering from sea-shells 

Figure 7 shows scattering strength values for sea-shells as a function of number density, modeled 

using three approaches: (a) treating them as uniform elastic spheres with acoustic and density 

parameters equivalent to those of the sea-shell carapace; (b) treating them as uniform movable rigid 

spheres with density parameters equivalent to those of the carapace; (c) treating them as elastic 

spherical shells (whose acoustic and density parameters are those of the shell carapace) filled with 

sea-water. The values for sea-shells modeled as elastic spheres are denoted by the symbol "O"; the 

values for sea-shells modeled as rigid spheres are denoted by "+" ; and the values obtained using 

the water-filled elastic shell approach are denoted by "*". The diameter of the sea-shells was varied 

between 4 and 128mm. Figure 7 clearly shows that the scattering strength of sea-shells, modeled 

using all three approaches, displays the expected [log(density)] behavior. For most of the number 

density cases, the scattering strength predicted using the elastic sphere model shows a wider range 

of values than the rigid model (as previous results would lead us to expect). Interestingly, the 

scattering strength of sea-shells modeled as water-filled elastic shells is comparable to the values 

obtained with the elastic sphere model and, for some of the number density cases, has a median 

value which is 1-2 dB higher. The scattering strength of the water-filled shells is also, of course, 

dependent upon the thickness of the shells. For the cases shown in figure 7, the shell thickness 

was maintaiuned at a constant value of 3mm. When the thickness is reduced, the scattering strength 

falls. Figure 8 shows the scattering strength as a function of number density for thick and thin 

shells. The points labeled "O" indicate the scattering strength, averaged over a series of ensembles, 

for number densities 5, 10, and 14 scatterers per square meter, for shells of thickness between 0.3 

- 3.8mm (as in figure 7). The points labeled "+" indicate the corresponding scattering strengths, 

for the same number densities, for shells whose thickness was allowed to vary randomly and 

uniformly between 0.3 - 1.3mm. We see that the reduction in shell thickness causes the scattering 

strength to fall by about 5-6dB. 

(c) Scattering from single large objects 

As a reference for the ensemble model results, we show in Table 3 target strength values for a 

single spherical scatterer of diameter 0.9 m, and several different elastic properties. 

Table 3. Single Sphere Target Strengths 

Metal Type       D (s/cc) cp (m/s) cT (m/s) Target Strength (dB) Target Strength (dB) 
K 5 (elastic model) (rigid model) 

Steel                   7.8 5790 3100 -11.1                         -13.0 
Aluminum           2.7 6420 3040 -19.4                        -12.9 
Brass                  8.7 4700 2110 -9.8                          -13.0 
Glass                  2.32 5640 3280 -9.8                         -12.9 
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Comparison of Table 3 with figs. 3 and 4 indicates that ensembles of cobbles and pebbles, 

modeled as elastic spheres, may give rise to scattering strengths similar to the target strengths of 

metal spheres of diameter 0.9m. When the rigid model is used (see figs. 5 and 6), cobbles and 

pebbles give rise to scattering strengths about the same as the target strength of an aluminum 

sphere of this diameter. The scattering strengths of granules and low number density sea-shells 

(see figs. 7 and 8) are smaller than the target strengths of the reference spheres. 

CONCLUSIONS 

A model for predicting the sonar scattering strengths of ensembles of rocks and sea-shells lying on 

the ocean floor has been presented. While a simplified modeling approach has been adopted, the 

model is capable of making realistic determinations for rocks and shells of the sizes, numbers, 

geologic type, and material compositions, typically found in littoral regions. The results of the 

model show that ensembles of cobbles and pebbles may give rise to scattering strengths of 

sufficient magnitude to mask sonar targets, or appear as false sonar targets themselves. 

Clearly, the theoretical results presented in this report require experimental verification. Some 

simple investigations could be undertaken to determine whether the elastic or rigid model leads to 

more realistic predictions of target strength, and whether surface roughness makes a measurable 

difference. For example, a number of experiments could be performed using glass marbles (glass 

has elastic properties similar to rock) and the NRL target cage, and spanning a predetermined range 

of frequencies and cage orientations. The marbles could be deployed and recovered by divers. A 

first trial would be with the empty target cage over an undisturbed sand bottom. The second would 

be over a sand bottom covered with smooth glass marbles. A third trial could be over an 

undisturbed sand bottom covered with the same marbles that have been sand blasted (so that the 

glass surfaces are rough and pitted), and possibly also broken into pieces. The same sequence of 

trials could be performed over a bare sand bottom that has been manually smoothed. 
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Elastic model scattering strength as a function of rock type 
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Elastic model scattering strength as a function of object density 
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Rigid model scattering strength as a function of rock type 
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Rigid model scattering strength as a function of object density 
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FIGURE 7 

Model scattering strength as a function of number density of sea-shells 
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FIGURE 8 

Shell model scattering strength as a function of object density for thin and thick shells. 
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